An increase in the association of GluN2B containing NMDA receptors with membrane scaffolding proteins was related to memory declines during aging.
نویسندگان
چکیده
The NMDA receptor is an important component of spatial working and reference memory. The receptor is a heterotetramer composed of a family of related subunits. The GluN2B subunit of the NMDA receptor appears to be essential for some forms of memory and is particularly vulnerable to change with age in both the hippocampus and cerebral cortex. GluN2B expression is particularly reduced in frontal cortex synaptic membranes. The current study examined the relationship between spatial cognition and protein-protein interactions of GluN2B-containing NMDA receptors in frontal cortex crude synaptosome from 3, 12, and 26-month-old C57BL/6 mice. Aged mice showed a significant decline in spatial reference memory and reversal learning from both young and middle-aged mice. Coimmunoprecipitation of GluN2B subunits revealed an age-related increase in the ratio of both postsynaptic density-95 (PSD-95) and the GluN2A subunit to the GluN2B subunit. Higher ratios of PSD-95/GluN2B and GAIP-interacting protein C-terminus (GIPC)/GluN2B were associated with poorer learning index scores across all ages. There was a significant correlation between GIPC/GluN2B and PSD-95/GluN2B ratios, but PSD-95/GluN2B and GluN2A/GluN2B ratios did not show a relationship. These results suggest that there were more triheteromeric (GluN2B/GluN2A/GluN1) NMDA receptors in older mice than in young adults, but this did not appear to impact spatial reference memory. Instead, an increased association of GluN2B-containing NMDA receptors with synaptic scaffolding proteins in aged animals may have contributed to the age-related memory declines.
منابع مشابه
Synaptic proteins in the hippocampus indicative of increased neuronal activity in CA3 in schizophrenia.
OBJECTIVE In schizophrenia, hippocampal perfusion is increased and declarative memory function is degraded. Based on an a priori model of hippocampal dysfunction in schizophrenic psychosis, the authors postulated molecular and cellular changes in CA3 consistent with increased NMDA receptor signaling. METHOD Postmortem hippocampal subfield tissue (CA3, CA1) from subjects with schizophrenia and...
متن کاملSAP102 mediates synaptic clearance of NMDA receptors.
Membrane-associated guanylate kinases (MAGUKs) are the major family of scaffolding proteins at the postsynaptic density. The PSD-MAGUK subfamily, which includes PSD-95, PSD-93, SAP97, and SAP102, is well accepted to be primarily involved in the synaptic anchoring of numerous proteins, including N-methyl-D-aspartate receptors (NMDARs). Notably, the synaptic targeting of NMDARs depends on the bin...
متن کاملEffect of ecstasy microinjection on spatial memory and it’s interaction with glutamatergic system in male rats
Introduction: Ecstasy is an amphetamine derivative, which its use has been consistently increasing over the past years. Ecstasy interacts with the glutamatergic system and it is known that glutamate receptors have a key role in learning and memory. The aim of this study was to investigate the interaction of ecstasy and glutamatergic system on learning and memory. Methods: Fifty-six male Wis...
متن کاملSelective Vulnerabilities of N-methyl-D-aspartate (NMDA) Receptors During Brain Aging
N-methyl-D-aspartate (NMDA) receptors are present in high density within the cerebral cortex and hippocampus and play an important role in learning and memory. NMDA receptors are negatively affected by aging, but these effects are not uniform in many different ways. This review discusses the selective age-related vulnerabilities of different binding sites of the NMDA receptor complex, different...
متن کاملThe aging of the NMDA receptor complex.
N-methyl-D-aspartate (NMDA) receptors are present at high density in the cerebral cortex and hippocampus and play an important role in learning and memory. These receptors are negatively affected by the aging process, but this effect does not appear to be uniform throughout the cortex and hippocampus. This review discusses the age-associated changes that occur in the different binding sites of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 30 شماره
صفحات -
تاریخ انتشار 2013